A cortical astrocyte subpopulation inhibits axon growth in vitro and in vivo

نویسندگان

  • RUI LIU
  • ZHE WANG
  • LIN GOU
  • HANPENG XU
چکیده

Astrocytes are the most heterogeneous and predominant glial cell type in the central nervous system. However, the functional significance of this heterogeneity remains to be elucidated. Following injury, damaged astrocytes inhibit axonal regeneration in vivo and in vitro. Cultured primary astrocytes are commonly considered good supportive substrates for neuron attachment and axon regeneration. However, it is not known whether different populations of cells in the heterogeneous astrocyte culture affect neuron behavior in the same way. In the present study, the effect of astrocyte heterogeneity on neuronal attachment and neurite outgrowth was examined using an in vitro and in vivo coculture system. In vitro, neonatal cortical astrocytes were co-cultured with purified dorsal root ganglia (DRG) neurons and astrocyte growth morphology, neuron attachment and neurite growth were evaluated. The results demonstrated that the heterogeneous astrocyte cells showed two different types of growth pattern, typical and atypical. Typical astrocytes were supportive to neuron attachment and neurite growth, which was consistent with previous studies, whereas atypical astrocytes inhibited neuron attachment and neurite growth. These inhibitory astrocytes exhibited a special growth pattern with various shapes and sizes, a high cell density, few oligodendrocytes on the top layer and occupied a smaller growth area compared with typical astrocytes. Neurites extended freely on typical supportive astrocyte populations, however, moved away when they reached atypical astrocyte growth pattern. Neurons growing on the atypical astrocyte pattern demonstrated minimal neurite outgrowth and these neurites had a dystrophic appearance, however, neuronal survival was unaffected. Immunocytochemistry studies demonstrated that these atypical inhibitory astrocytes were glial fibrillary acidic protein (GFAP) positive cells. The existence of inhibitory astrocyte subpopulations in normal astrocytes reflects the complexity of the function of astrocyte populations. In vivo, DRG neurons in grey matter did not show neurite growth, while DRG neurons survived and showed robust axon outgrowth along the corpus callosum. In conclusion, further studies on this new type of inhibitory astrocyte subpopulation may deepen our understanding of the complex biology of astrocytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linarin Inhibits the Acetylcholinesterase Activity In-vitro and Ex-vivo

Linarin is a flavone glycoside in the plants Flos chrysanthemi indici, Buddleja officinalis, Cirsium setosum, Mentha arvensis and Buddleja davidii, and has been reported to possess analgesic, antipyretic, anti-inflammatory and neuroprotective activities. In this paper, linarin was investigated for its AChE inhibitory potential both in vitro and ex vivo. Ellman’s colorimetric method was used for...

متن کامل

Linarin Inhibits the Acetylcholinesterase Activity In-vitro and Ex-vivo

Linarin is a flavone glycoside in the plants Flos chrysanthemi indici, Buddleja officinalis, Cirsium setosum, Mentha arvensis and Buddleja davidii, and has been reported to possess analgesic, antipyretic, anti-inflammatory and neuroprotective activities. In this paper, linarin was investigated for its AChE inhibitory potential both in vitro and ex vivo. Ellman’s colorimetric method was used for...

متن کامل

I-6: Follicle Development in Culture of Frozen / Thawed Human Ovarian Tissue

The primary therapeutic goal for the oncology patient is survival. Recent advances in diagnoses and treatment of neoplasia have resulted in an ever-increasing number of patients being cured and resuming a normal life. However, recognized side effects of treatments used to eradicate malignancies are temporary or permanent sterility. The cryopreservation of ovarian tissue harvested before cancer ...

متن کامل

Phenethyl isothiocyanate Triggers Apoptosis, Combats Oxidative Stress and Inhibits Growth of Ehrlich Ascites Carcinoma Mouse Model

The aim of this study is to investigate the antitumor activity and possible molecular mechanism of Phenethyl isothiocyanate (PEITC) against Ehrlich ascites carcinoma in-vivo and in-vitro.In-vivo, ascetic fluid volume, body weight, serum malondialdehyde (MDA) level and total antioxidant capacity (TAC) were determined using Ehrlich ascites carcinoma (EAC) bearing mice. In-vitro, MTT assay was use...

متن کامل

Phenethyl isothiocyanate Triggers Apoptosis, Combats Oxidative Stress and Inhibits Growth of Ehrlich Ascites Carcinoma Mouse Model

The aim of this study is to investigate the antitumor activity and possible molecular mechanism of Phenethyl isothiocyanate (PEITC) against Ehrlich ascites carcinoma in-vivo and in-vitro.In-vivo, ascetic fluid volume, body weight, serum malondialdehyde (MDA) level and total antioxidant capacity (TAC) were determined using Ehrlich ascites carcinoma (EAC) bearing mice. In-vitro, MTT assay was use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2015